
Python Strings and

Data Structures

John Stasko

CS 6452

Prototyping Interactive Systems

Learning Objectives

• Strings (more)

• Python data structures

 Lists

 Tuples

 Dictionaries

• Get comfortable writing more code

Fall 2016 CS 6452: Prototyping Interactive Systems 2

Questions?

• Basic Python OK?

• How was the HW?

Fall 2016 CS 6452: Prototyping Interactive Systems 3

Strategies

• Don’t write up your entire program all at
once

• Decompose it into pieces & get each piece
working independently

Fall 2016 CS 6452: Prototyping Interactive Systems 4

Multiple values

Fall 2016 CS 6452: Prototyping Interactive Systems 5

def mult3(a, b, c):

return a+1, b+2, c+3

a, b, c = mult3(1, 1, 1)

Strings

• Used everywhere
(Take out your laptops)

• >>> s = “Hey!”

>>> print(s + “ You”)

>>> print(len(s))

>>> print(s * 3)

Fall 2016 CS 6452: Prototyping Interactive Systems 6

Printing Elements

Fall 2016 CS 6452: Prototyping Interactive Systems 7

for letter in “Hello”:

print(letter)

str = “run”

for ch in str:

print(ch, end=‘ ‘)

Print only vowels?

str = “dictionary”

for letter in str:

if letter in “aeiouAEIOU”:

print(letter)

Print all the letters in a string

Reverse

Fall 2016 CS 6452: Prototyping Interactive Systems 8

How to reverse a string?

def reverse(str):

result = “”

for letter in str:

result = letter + result

print result

Indices

Fall 2016 CS 6452: Prototyping Interactive Systems 9

Strings have indices

W i n en r

[0] [1] [2] [3] [4] [5]

str = “Winner”

print(str[4])

print(str[-1])

print(str[-2])

print(str[6])

print(str[1:3])

Alt Traversal

Fall 2016 CS 6452: Prototyping Interactive Systems 10

Traverse, print, and reverse characters with while, not for

def reverse2(str):

index = 0

rev = “”

while index < len(str)

print(str[index])

rev = rev + str[index]

print(rev)

Alt Traversal

Fall 2016 CS 6452: Prototyping Interactive Systems 11

Traverse, print, and reverse characters with while, not for

def reverse2(str):

index = 0

rev = “”

while index < len(str)

print(str[index])

rev = str[index] + rev

index = index + 1

print(rev)

Modify a String?

• Strings are immutable

 Once created, cannot be changed

• So how do you “modify” one?

• Always create a new one

Fall 2016 CS 6452: Prototyping Interactive Systems 12

String Operations

• Many functions on strings

Fall 2016 CS 6452: Prototyping Interactive Systems 13

s.count(s1) – count of how often s1 occurs in s
s.find(s1) – Returns first index of s1 in s (-1 if not there)
s.lower() – convert to lowercase
s.upper() – convert to uppercase
s.replace(old, new) – replaces all occurrences of old with new
s.isalpha() – true if only contains alphabetic characters
s.isdigit() – true if only numbers
s.lstrip() – removes leading whitespace from s
s.rstrip() – removes trailing whitespace from s
s.strip() – removes leading & trailing whitespace from s
s.isupper() – true if all uppercase

…

Remember: Some return a new string, don’t modify existing one

Useful function

Fall 2016 CS 6452: Prototyping Interactive Systems 14

>>>str = “ John plays golf”

>>>l = str.split()

>>>print(l)

[‘John’, ‘plays’, ‘golf’]

>>> str.strip().lower().split()

???

A list (more to come soon)

Parsing a String

Fall 2016 CS 6452: Prototyping Interactive Systems 15

str = “From: Bruckman, Amy S asb@cc.gatech.edu Date: Fri, 26 Aug 2016 20:32:17 +0000”

pos = str.fund(‘@’)

space = str.find(‘ ‘,pos)

host = str[pos+1,space]

From: Bruckman, Amy S asb@cc.gatech.edu Date: Fri, 26 Aug 2016 20:32:17 +0000

Want second half of email (after @ sign) in this

Exercise

• Create a palindrome tester

Fall 2016 CS 6452: Prototyping Interactive Systems 16

def palindrome(str):

start = 0

end = len(str) – 1

while start < end:

if str[start] != str[end]

return False

start = start + 1

end = end - 1

return True

Helpful Stuff 1

• dir function – lists all methods on a type

of object

Fall 2016 CS 6452: Prototyping Interactive Systems 17

>>> stuff = 'Hello world'

>>> type(stuff) <type 'str'>

>>> dir(stuff) ['capitalize', 'center', 'count', 'decode', 'encode', 'endswith',

'expandtabs', 'find', 'format', 'index', 'isalnum', 'isalpha', 'isdigit', 'islower',

'isspace', 'istitle', 'isupper', 'join', 'ljust', 'lower', 'lstrip', 'partition',

'replace', 'rfind', 'rindex', 'rjust', 'rpartition', 'rsplit', 'rstrip', 'split',

'splitlines', 'startswith', 'strip', 'swapcase', 'title', 'translate', 'upper', 'zfill']

Helpful Stuff 2

• help function tells what a method does

Fall 2016 CS 6452: Prototyping Interactive Systems 18

>>> help(str.capitalize)

Help on method_descriptor:

capitalize(...)

S.capitalize() -> string

Return a copy of the string S with only its first character capitalized.

Admin Intermission

• Survey

• Piazza

• Office hours

• Slides

• Code in t-square

Fall 2016 CS 6452: Prototyping Interactive Systems 19

Data Structures

• Sometimes, you need more than a
variable

Fall 2016 CS 6452: Prototyping Interactive Systems 20

Variables

• A variable is simply a name that contains a reference to
some information

• foo = “Jim”

• Variables can be reassigned, and multiple variables can
refer to the same thing

• Stashing a reference in a variable gives you a way to
name it, and get at it later

Fall 2016 CS 6452: Prototyping Interactive Systems 21

foo “Jim”

Problem

• Some more complex structures are hard to represent by
just a named variable though

• Example: you want to keep track of all of the users in a
chat

 user1 = “Steven”

 user2 = “Amy”

 ...

• This is too static. Would you just create 1000 variables
in case you ever had that many users? How would you
do something to each one (can’t easily iterate)

Fall 2016 CS 6452: Prototyping Interactive Systems 22

Lists to the Rescue

• Fortunately, Jython has a build in way to do this: lists

• foo = [“one”, “two”, “three”]

• Lists collect multiple references to data items into a single data
structure

• These references are ordered

• The contents of the list can be altered (it is mutable)

• currentChatUsers = [“Amy”, “Steven”, ...]

Fall 2016 CS 6452: Prototyping Interactive Systems 23

foo

List

List

• Sequence of values

• Heterogeneous (not all same type of
value)

• Mutable!

• Denoted with []

[50, 40, 30, ‘Mary’, ‘Fred’]

Fall 2016 CS 6452: Prototyping Interactive Systems 24

Fall 2016 CS 6452: Prototyping Interactive Systems 25

evens = [2, 4, 6, 8]

names = [“Jim”, “Jane”, “Mike”, “Mary”]

vals = range(5)

vals is [0, 1, 2, 3, 4]

nums = range(1,10,3)

???

for i in nums:

print(i)

Accessing Elements

• [] used to get an index

Fall 2016 CS 6452: Prototyping Interactive Systems 26

days = [‘sun’, ‘mon’, ‘tue’, ‘wed’, ‘thu’, ‘fri’, ‘sat’]

c = days[3]

print(c)

print(days[-1])

week = days[1:6]

print(week)

days[2] = ‘sleep’

What happens?
Mutable

List Methods

Fall 2016 CS 6452: Prototyping Interactive Systems 27

append(item) – Adds item to end of list
count(item) – Returns count of how often item appears
index(item) – Returns index of first element with value item
insert(index, item) – Put item into list at position index and

slide all others over one to the right
sort() – Sort items so they appear in ascending order
remove(item) – Remove first occurrence of item
reverse() – Reverses order of list

>>>l = [‘a’, ‘b’, ‘c’]

>>> del l[1]

>>> print(l)

Aliases

Fall 2016 CS 6452: Prototyping Interactive Systems 28

list1 = [1, 2, 3, 4]

list2 = list1

list1[2] = 12

print(list1)

print(list2)

list3 = [] + list2

list3.append(10)

Tuple

• Like lists, only immutable
 The set of references in a tuple is fixed

• Generally used either when:

 You need a constant list
daysOfWeek = (“Monday,” “Tuesday”, “Wednesday”, “Thursday”, “Friday”, “Saturday”, “Sunday”)

 You need to group together a set of data whose structure is
fixed:

E.g., using tuples as quick-and-dirty records, such as address book
entries:

myContactInfo = (“John Stasko”, “TSRB355”, “stasko@cc.gatech.edu”)

• All list operations work on tuples, except ones that
modify the set of references within the tuple

 So, no append(), remove(), etc.

Fall 2016 CS 6452: Prototyping Interactive Systems 29

Tuple

• Immutable!

• Lists of comma separated values

Fall 2016 CS 6452: Prototyping Interactive Systems 30

t1 = ‘a’, ‘b’, ‘c’

t2 = (‘a’, ‘b’, ‘c’)

equivalent

t3 = tuple(‘bobcat’)

print(t3)

t4 = (10, 20, 30, 40)

print(t4[2])

print(t4[0:2])

Access

Fall 2016 CS 6452: Prototyping Interactive Systems 31

>>> m = [‘go', 'fish']

>>> (x, y) = m

>>> x

‘go'

>>> y

'fish'

>>>

>>> b,a = a,b What does that do?

Multiple values

Fall 2016 CS 6452: Prototyping Interactive Systems 32

def mult3(a, b, c):

return a+1, b+2, c+3

a, b, c = mult3(1, 1, 1)

Associating Data Items

• Sometimes, you need to associate one item with
another one

 Example: hours worked on each day of the week:

• You could do this with variables, as long as
there’s a fixed set of them:

 sunday=4.5

 monday=8

Fall 2016 CS 6452: Prototyping Interactive Systems 33

“Sunday” 4.5

“Monday” 8

... ...

Associating Data Items

• If you don’t know the associations you might
have up front, you could use parallel lists:

 workDates = [“1/29/05”, “1/30/05”, “2/1/05”, ...]

 workHours = [4.5, 8, 5.5, ...]

• Then, iterate through the first list to find the
date you’re looking for, then look for the item
with the corresponding index in the second list

• Too much work! Too error prone!

• Fortunately, Python has a built-in data structure
for creating associations: the dictionary

Fall 2016 CS 6452: Prototyping Interactive Systems 34

Dictionary

• Like a list, but the index can be anything

 You state what it is

 Called a key

• Made up of key,value pairs

• Used to store and subsequently access
data

• Similar to a hash table

Fall 2016 CS 6452: Prototyping Interactive Systems 35

Example

Fall 2016 CS 6452: Prototyping Interactive Systems 36

902634854, “Sally Wilson”
917365643, “Lars Jonsson”
931967385, “Sakshi Gupta”
923438961, “Jiang Xiao”
…

Syntax: { key1:val1, key2:val2, … }

Dictionary Data Structure

• Dictionaries associate values with keys (you lookup a value given its
key)

• Both are references to data items

• workRecord = {“1/29/05”:4.5, “1/30/05”:8, “2/2/05”:5.5 }

• Dictionaries are the most commonly used Python data structure

• Virtually any Python data types can be used as a key or value

Fall 2016 CS 6452: Prototyping Interactive Systems 37

workRecord

Dictionary

“1/29/05” 4.5

“1/30/05” 8

“2/2/05” 5.5

Code Example

Fall 2016 CS 6452: Prototyping Interactive Systems 38

months = {‘Jan’:1, ‘Feb’:2, ‘Mar’:3, 1:’Jan’, 2:’Feb’, 3:’Mar’}

print(months[2])

print(months[‘Jan’])

print(months.keys())

print(months.values())

Important Note

• It is not ordered, ie, order is unpredictable

print(months)

• What happens?

Fall 2016 CS 6452: Prototyping Interactive Systems 39

Walking through

Fall 2016 CS 6452: Prototyping Interactive Systems 40

total = {‘dave’:83, ‘sue’:91, ‘audrey’:77}

for key in total:

print(key, total[key])

How might you print them in sorted (alpha) order?

total = {‘dave’:83, ‘sue’:91, ‘audrey’:77}

print(total)

lst = list(total.keys())

lst.sort()

for key in lst:

print(key, total[key])

Exercise

• Want to write a program that, given a big
string, counts how often each letter
appears

• How do it?

Fall 2016 CS 6452: Prototyping Interactive Systems 41

Solutions

• 1. Make 26 variables

 Yuk

• 2. Make a list

 Need numeric index

• Take ordinal value of character as index

Fall 2016 CS 6452: Prototyping Interactive Systems 42

Solutions

• 3. Use dictionary

Fall 2016 CS 6452: Prototyping Interactive Systems 43

word = ‘areallongword'

d = dict()

for c in word:

if c not in d:

d[c] = 1

else:

d[c] = d[c] + 1

print(d)

Operations Summary

Fall 2016 CS 6452: Prototyping Interactive Systems 44

d[k] – returns item in d with key k
len(d) – returns number of items in d
list(d.keys()) – returns a list containing the keys in d
list(d.values()) – returns a list containing the values in d
k in d – returns true if key k is in d
del d[k] – removes the key k from d
d.get(k,v) – returns d[k] if k is in d, and v otherwise
d[k] = v – associates value v with key k in d

(replaces an existing value, if present)
for k in d – iterates over keys in d
d.items() – returns a list of (key,value) tuples

…

Learning Objectives

• Strings (more)

• Python data structures

 Lists

 Tuples

 Dictionaries

• Get comfortable writing more code

Fall 2016 CS 6452: Prototyping Interactive Systems 45

Next Time

• Manipulating files

 Reading and writing

• Starting to work with data

Fall 2016 CS 6452: Prototyping Interactive Systems 46

