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Learning Objectives

• Strings (more)

• Python data structures

 Lists

 Tuples

 Dictionaries

• Get comfortable writing more code
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Questions?

• Basic Python OK?

• How was the HW?
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Strategies

• Don’t write up your entire program all at 
once

• Decompose it into pieces & get each piece 
working independently

Fall 2016 CS 6452: Prototyping Interactive Systems 4



Multiple values
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def mult3(a, b, c):

return a+1, b+2, c+3

a, b, c = mult3(1, 1, 1)



Strings

• Used everywhere
(Take out your laptops)

• >>> s = “Hey!”

>>> print(s + “ You”)

>>> print(len(s))

>>> print(s * 3)
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Printing Elements
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for letter in “Hello”:

print(letter)

str = “run”

for ch in str:

print(ch, end=‘ ‘)

Print only vowels?

str = “dictionary”

for letter in str:

if letter in “aeiouAEIOU”:

print(letter)

Print all the letters in a string



Reverse
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How to reverse a string?

def reverse(str):

result = “”

for letter in str:

result = letter + result

print result



Indices
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Strings have indices

W i n en r

[0] [1] [2] [3] [4] [5]

str = “Winner”

print(str[4])

print(str[-1])

print(str[-2])

print(str[6])

print(str[1:3])



Alt Traversal
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Traverse, print, and reverse characters with while, not for

def reverse2(str):

index = 0

rev = “”

while index < len(str)

print(str[index])

rev = rev + str[index]

print(rev)



Alt Traversal
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Traverse, print, and reverse characters with while, not for

def reverse2(str):

index = 0

rev = “”

while index < len(str)

print(str[index])

rev = str[index] + rev

index = index + 1

print(rev)



Modify a String?

• Strings are immutable

 Once created, cannot be changed

• So how do you “modify” one?

• Always create a new one
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String Operations

• Many functions on strings
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s.count(s1) – count of how often s1 occurs in s
s.find(s1) – Returns first index of s1 in s (-1 if not there)
s.lower() – convert to lowercase
s.upper() – convert to uppercase
s.replace(old, new) – replaces all occurrences of old with new
s.isalpha() – true if only contains alphabetic characters
s.isdigit() – true if only numbers
s.lstrip() – removes leading whitespace from s
s.rstrip() – removes trailing whitespace from s
s.strip() – removes leading & trailing whitespace from s
s.isupper() – true if all uppercase

…

Remember: Some return a new string, don’t modify existing one



Useful function
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>>>str = “   John plays golf”

>>>l = str.split()

>>>print(l)

[‘John’, ‘plays’, ‘golf’]

>>> str.strip().lower().split()

???

A list (more to come soon)



Parsing a String
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str = “From: Bruckman, Amy S asb@cc.gatech.edu Date: Fri, 26 Aug 2016 20:32:17 +0000” 

pos = str.fund(‘@’)

space = str.find(‘ ‘,pos)

host = str[pos+1,space]

From: Bruckman, Amy S asb@cc.gatech.edu Date: Fri, 26 Aug 2016 20:32:17 +0000

Want second half of email (after @ sign) in this



Exercise

• Create a palindrome tester
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def palindrome(str):

start = 0

end = len(str) – 1

while start < end:

if str[start] != str[end]

return False

start = start + 1

end = end - 1

return True



Helpful Stuff 1

• dir function – lists all methods on a type 

of object
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>>> stuff = 'Hello world' 

>>> type(stuff) <type 'str'> 

>>> dir(stuff) ['capitalize', 'center', 'count', 'decode', 'encode', 'endswith',

'expandtabs', 'find', 'format', 'index', 'isalnum', 'isalpha', 'isdigit', 'islower',

'isspace', 'istitle', 'isupper', 'join', 'ljust', 'lower', 'lstrip', 'partition',

'replace', 'rfind', 'rindex', 'rjust', 'rpartition', 'rsplit', 'rstrip', 'split',

'splitlines', 'startswith', 'strip', 'swapcase', 'title', 'translate', 'upper', 'zfill'] 



Helpful Stuff 2

• help function tells what a method does
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>>> help(str.capitalize) 

Help on method_descriptor: 

capitalize(...) 

S.capitalize() -> string 

Return a copy of the string S with only its first character capitalized. 



Admin Intermission

• Survey

• Piazza

• Office hours

• Slides

• Code in t-square
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Data Structures

• Sometimes, you need more than a 
variable
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Variables

• A variable is simply a name that contains a reference to 
some information

• foo = “Jim”

• Variables can be reassigned, and multiple variables can 
refer to the same thing

• Stashing a reference in a variable gives you a way to 
name it, and get at it later
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foo “Jim”



Problem

• Some more complex structures are hard to represent by 
just a named variable though

• Example: you want to keep track of all of the users in a 
chat 

 user1 = “Steven”

 user2 = “Amy”

 ...

• This is too static. Would you just create 1000 variables 
in case you ever had that many users?  How would you 
do something to each one (can’t easily iterate)
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Lists to the Rescue

• Fortunately, Jython has a build in way to do this:  lists

• foo = [ “one”, “two”, “three” ]

• Lists collect multiple references to data items into a single data 
structure

• These references are ordered

• The contents of the list can be altered (it is mutable)

• currentChatUsers = [ “Amy”, “Steven”, ... ]
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foo

List



List

• Sequence of values

• Heterogeneous (not all same type of 
value)

• Mutable!

• Denoted with [  ]

[50, 40, 30, ‘Mary’, ‘Fred’]
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evens = [2, 4, 6, 8]

names = [“Jim”, “Jane”, “Mike”, “Mary”]

vals = range(5)

# vals is  [0, 1, 2, 3, 4]

nums = range(1,10,3)

# ???

for i in nums:

print(i)



Accessing Elements

• [ ] used to get an index
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days = [‘sun’, ‘mon’, ‘tue’, ‘wed’, ‘thu’, ‘fri’, ‘sat’]

c = days[3]

print(c)

print( days[-1] )

week = days[1:6]

print(week)

days[2] = ‘sleep’

# What happens?
Mutable



List Methods
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append(item) – Adds item to end of list
count(item) – Returns count of how often item appears
index(item) – Returns index of first element with value item
insert(index, item) – Put item into list at position index and

slide all others over one to the right
sort() – Sort items so they appear in ascending order
remove(item) – Remove first occurrence of item
reverse() – Reverses order of list

>>>l = [‘a’, ‘b’, ‘c’]

>>> del l[1]

>>> print(l)



Aliases
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list1 = [1, 2, 3, 4]

list2 = list1

list1[2] = 12

print(list1)

print(list2)

list3 = [] + list2

list3.append(10)



Tuple

• Like lists, only immutable
 The set of references in a tuple is fixed

• Generally used either when:

 You need a constant list
daysOfWeek = ( “Monday,” “Tuesday”, “Wednesday”, “Thursday”, “Friday”, “Saturday”, “Sunday” )

 You need to group together a set of data whose structure is 
fixed:

E.g., using tuples as quick-and-dirty records, such as address book 
entries:

myContactInfo = ( “John Stasko”, “TSRB355”, “stasko@cc.gatech.edu” )

• All list operations work on tuples, except ones that 
modify the set of references within the tuple

 So, no append(), remove(), etc.
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Tuple

• Immutable!

• Lists of comma separated values
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t1 = ‘a’, ‘b’, ‘c’

t2 = (‘a’, ‘b’, ‘c’)

# equivalent

t3 = tuple(‘bobcat’)

print(t3)

t4 = (10, 20, 30, 40)

print(t4[2])

print( t4[0:2])



Access
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>>> m = [ ‘go', 'fish' ]

>>> (x, y) = m

>>> x

‘go'

>>> y

'fish'

>>>

>>> b,a = a,b What does that do?



Multiple values
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def mult3(a, b, c):

return a+1, b+2, c+3

a, b, c = mult3(1, 1, 1)



Associating Data Items

• Sometimes, you need to associate one item with 
another one

 Example: hours worked on each day of the week:

• You could do this with variables, as long as 
there’s a fixed set of them:

 sunday=4.5

 monday=8
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“Sunday” 4.5

“Monday” 8

... ...



Associating Data Items

• If you don’t know the associations you might 
have up front, you could use parallel lists:

 workDates = [ “1/29/05”, “1/30/05”, “2/1/05”, ... ]

 workHours = [ 4.5, 8, 5.5, ... ]

• Then, iterate through the first list to find the 
date you’re looking for, then look for the item 
with the corresponding index in the second list

• Too much work!  Too error prone!

• Fortunately, Python has a built-in data structure 
for creating associations:  the dictionary
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Dictionary

• Like a list, but the index can be anything

 You state what it is

 Called a key

• Made up of  key,value pairs

• Used to store and subsequently access 
data

• Similar to a hash table
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Example
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902634854, “Sally Wilson”
917365643, “Lars Jonsson”
931967385, “Sakshi Gupta”
923438961, “Jiang Xiao”
…

Syntax:  { key1:val1, key2:val2, … }



Dictionary Data Structure

• Dictionaries associate values with keys (you lookup a value given its 
key)

• Both are references to data items

• workRecord = {“1/29/05”:4.5, “1/30/05”:8, “2/2/05”:5.5 }

• Dictionaries are the most commonly used Python data structure

• Virtually any Python data types can be used as a key or value
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workRecord

Dictionary

“1/29/05” 4.5

“1/30/05” 8

“2/2/05” 5.5



Code Example
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months = {‘Jan’:1, ‘Feb’:2, ‘Mar’:3, 1:’Jan’, 2:’Feb’, 3:’Mar’}

print(months[2])

print(months[‘Jan’])

print(months.keys())

print(months.values())



Important Note

• It is not ordered, ie, order is unpredictable

print(months)

• What happens?
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Walking through
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total = {‘dave’:83, ‘sue’:91, ‘audrey’:77}

for key in total:

print(key, total[key])

How might you print them in sorted (alpha) order?

total = {‘dave’:83, ‘sue’:91, ‘audrey’:77}

print(total)

lst = list(total.keys())

lst.sort()

for key in lst:

print(key, total[key])



Exercise

• Want to write a program that, given a big 
string, counts how often each letter 
appears

• How do it?
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Solutions

• 1. Make 26 variables

 Yuk

• 2. Make a list

 Need numeric index

• Take ordinal value of character as index

Fall 2016 CS 6452: Prototyping Interactive Systems 42



Solutions

• 3. Use dictionary
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word = ‘areallongword'

d = dict()

for c in word:

if c not in d:

d[c] = 1

else:

d[c] = d[c] + 1

print(d)



Operations Summary
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d[k] – returns item in d with key k
len(d) – returns number of items in d
list(d.keys()) – returns a list containing the keys in d
list(d.values()) – returns a list containing the values in d
k in d – returns true if key k is in d
del d[k] – removes the key k from d
d.get(k,v) – returns d[k] if k is in d, and v otherwise
d[k] = v – associates value v with key k in d

(replaces an existing value, if present)
for k in d – iterates over keys in d
d.items() – returns a list of (key,value) tuples

…



Learning Objectives

• Strings (more)

• Python data structures

 Lists

 Tuples

 Dictionaries

• Get comfortable writing more code
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Next Time

• Manipulating files

 Reading and writing

• Starting to work with data
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