

Website: http://dcsqrd.com

Email: contact@dcsqrd.com

 DCsqrd, 2016

For Georgia Tech CS6452 Prototyping Interactive Systems, please do not distribute
1

DCsqrd
T R A I N I N G

Python 3
(Intro excerpted from Python for Informatics)

1. Introduction
Programming is a very creative and rewarding activity. You can write programs for

many reasons, ranging from making your living to solving a difficult data analysis problem

to having fun to helping someone else solve a problem. We believe that everyone needs to

know how to program, and that once you know how to program you will figure out what

you want to do with your newfound skills.

There are many things that you might need to do, that you could offload to a

computer. If you know the language, you can “tell” the computer to do tasks that were

repetitive. Interestingly, the kinds of things computers can do best are often the kinds of

things that we humans find boring and mind-numbing. For example, you can easily read

and understand the above paragraph, but if I ask you to tell me the word that is used most,

counting them is almost painful because it is not the kind of problem that human minds are

designed to solve.

This very fact that computers are good at things that humans are not is why you need

to become skilled at talking “computer language”. Once you learn this new language, you

can delegate mundane tasks to your computer, leaving more time for you to do the things

that you are uniquely suited for. You bring creativity, intuition, and inventiveness to this

partnership.

You will need two skills to be a programmer:

1. (The easy one) You need to know the vocabulary and grammar to spell out the “words”

in this new language, so the computer understands

2. (The hard one) You need to combine these words and sentences to convey an idea, tell

a story to the reader. The “Story” is the problem you are trying to solve, the “Idea” is

the solution.

Once you get the hang of seeing patterns in problems, programming becomes a

very pleasant and creative process.

http://dcsqrd.com/
mailto:contact@dcsqrd.com

Website: http://dcsqrd.com

Email: contact@dcsqrd.com

 DCsqrd, 2016

For Georgia Tech CS6452 Prototyping Interactive Systems, please do not distribute
2

DCsqrd
T R A I N I N G

2. Installing Python
This section will tell you where to download and install the Python IDE (IDLE)

 https://www.python.org/downloads/

 Download and install like any other program, no license required, completely free!

 Remember, Python 3 and Python 2 are not compatible! Download 3 for this

workshop.

 For a better IDE, download PyCharm Community from

https://www.jetbrains.com/pycharm/download/

 During initial configuration, you will need to point PyCharm to where Python (select

Local) is installed. This is the Project SDK.

http://dcsqrd.com/
mailto:contact@dcsqrd.com
https://www.python.org/downloads/
https://www.jetbrains.com/pycharm/download/

Website: http://dcsqrd.com

Email: contact@dcsqrd.com

 DCsqrd, 2016

For Georgia Tech CS6452 Prototyping Interactive Systems, please do not distribute
3

DCsqrd
T R A I N I N G

3. Differences between Python and C++
Python C/C++, Java

Interpreted line by line Compiled in one go

Dynamically typed Strictly typed

Large number of libraries Fewer standard libraries

Follows natural language

principles
More symbol-oriented

Indentation-based Space-insensitive

Scripting language
Procedure-based

programming

No pointer support, only

references

Pointers for direct memory

manipulation

4. Conversing with Python
 Open IDLE, let’s start from there. The >>> is called the “Interactive Chevron Prompt”

http://dcsqrd.com/
mailto:contact@dcsqrd.com

Website: http://dcsqrd.com

Email: contact@dcsqrd.com

 DCsqrd, 2016

For Georgia Tech CS6452 Prototyping Interactive Systems, please do not distribute
4

DCsqrd
T R A I N I N G

 This is like the Linux terminal, you can “script” from here – mainly one-line commands.

To write a “batch” of commands, press ctrl+n, to open a new Python file.

 Type the program, save it with ctrl+s, press f5 to run. Output will appear in the console

window.

5. Your first program
Python is interpreted and not compiled, meaning it “understands” the program one

line at a time. Python’s philosophy is to keep things as simple as possible, so there is not a

lot of boilerplate code.

To print “hello world!” just type print(“hello world!”) into the chevron prompt

or a new file.

6. A more intelligent IDE
 If you have PyCharm

installed, open it. Let us

try a program there.

Create a new project,

name it LearnPy.

 Create a new Python

file from the context

menu of the project.

 Enter your code into

the file. PyCharm will

suggest code with

syntax and parameters

where necessary.

http://dcsqrd.com/
mailto:contact@dcsqrd.com

Website: http://dcsqrd.com

Email: contact@dcsqrd.com

 DCsqrd, 2016

For Georgia Tech CS6452 Prototyping Interactive Systems, please do not distribute
5

DCsqrd
T R A I N I N G

 Run the code with alt+shift+f10, select which file to execute.

 Output appears in an integrated window.

7. Data types in Python
There are only three default data types in Python. There is no differentiation like int,

float, char, double or string.

7.1 Primitives

Primitives, as the name suggest, are primitive values bound to a variable. For

example, a=15 is a primitive assignment, where the variable name is a and the primitive

value is 15.

Similarly, floats, strings can be assigned to variables. Example:

str = “Good, you are learning Python!”

pi = 3.14159

You can reassign primitives dynamically. For example,

a=15

a=18.67

a = “Python is awesome!”

There is also a special set of primitives:

 True and False, which are Booleans. Note that they do not have quotes around

them, to differentiate from strings.

 None, which indicates the absence of any value. Functions equivalent is the

NotImplemented type. Neither are used much in interest of best practices.

http://dcsqrd.com/
mailto:contact@dcsqrd.com

Website: http://dcsqrd.com

Email: contact@dcsqrd.com

 DCsqrd, 2016

For Georgia Tech CS6452 Prototyping Interactive Systems, please do not distribute
6

DCsqrd
T R A I N I N G

7.2 Lists

Lists contain a set of values accessed by the “index”. Index is a contiguous integer

sequence that starts with 0. Example: arr=[10,20,35] means a[0]=10, a[1]=20 and

a[2]=35.

Note that, since Python does not differentiate between int, float, char and

strings, it is possible to have mixed types of data inside a list, unlike C-like languages. For

instance, arr=[10,’a’,”Hello!\n”,22.7895,”Learn Python!”] is absolutely valid.

Accessing elements are similar with normal lists, and types can change dynamically. Python

calls this a “list” to differentiate from arrays (in other languages), which usually contain

elements of similar data types. Note that lists can contain lists as elements, like this:

['spam', 1, ['Brie', 'Roquefort', 'Pol le Veq'], [1, 2, 3]] # length=4

The operator can be used to check if an element is in a given list. For example:

 list = [3, 5, 7, 14]

 3 in list # returns True

 ‘adam’ in list # returns False

Some notable functions on lists are append(), extend(), sort(), pop(),

del(), remove(), max(), min(), sum(),

7.3 Dictionaries

 Dictionaries are like hash maps or associative arrays in other languages. For the

uninitiated, they are key-value pairs. Dictionaries are similar to lists, except elements are

accessed via “key”s. Example,

 hash = {“name”:”John”,”age”:21,”college”:”NIE IT”}

 Accessing elements is done like this:

hash[“name”] is “John”, hash[“age”] is 21, and so on

 Note that dictionaries are delimited by {} and elements are separated by , whereas

keys and values are separated by :

 Some important patterns for dictionaries are:

 dictionary.get(key,default): returns the value if key is present in dictionary,

default value otherwise.

 for var in dictionary: returns the list of keys in the dictionary, in no particular

order.

http://dcsqrd.com/
mailto:contact@dcsqrd.com

Website: http://dcsqrd.com

Email: contact@dcsqrd.com

 DCsqrd, 2016

For Georgia Tech CS6452 Prototyping Interactive Systems, please do not distribute
7

DCsqrd
T R A I N I N G

7.4 Tuples

 Tuples are like lists, except they are immutable. Values can be of any type, and are

comparable and hashable. Just like lists, they are indexed by integers. Tuples are enclosed

by round brackets, although it is not strictly necessary. Example, t = ('a','b','c','d',

'e'). If you need to create a tuple with a single value, remember to use a comma after the

first element, like t = (‘a’,) to differentiate from string assignments.

8. Reading input from and writing output to the console
 The input([prompt]) method is used to take input from the terminal. It takes in a

string prompt and returns the keyboard input as a string.

 speed = input(“Enter your speed”)

 print() is used to print data to the console. Strings can be separated by commas

or concatenation operator(+) in Python-style print()s, or %d, %f C-style prints can

be used with %variable_name in posterior order.

 print(“Language”+lang,“Version”,ver) #Python style print()

 print(“You are using %s %d”,%lang, %ver) #C-style print()

9. Operators
Operators work pretty much like C-based languages, but with a few differences:

 Python supports exponentiation operation via the ** operator

 Division operator / produces floating point values by default, but // performs

integer division (not applicable to Python 2.x)

 Increment and decrement operators are not supported, use +=1 or -=1 instead

 + is used to concatenate strings, if one operand is a string, the rest are converted

into strings by default. Be careful!

 a=”2”

 b = 3

 print(a+b) #This prints 23!

 * operator can be used to repeat a sequence. For example, 3*’un’+’ium’

produces unununium

 All data input from the user (using input() function) are strings by default. You will

need to convert it into numeric types explicitly when necessary.

 Use str() to convert any data to a string, and int() to convert data into integer

(if supported). Similarly, float(), chr() can be used to construct these types.

 == and != can be used as usual in Python, but there is a stronger set of equality and

non-equality comparison operators, in the form of is and is not. == and != are

http://dcsqrd.com/
mailto:contact@dcsqrd.com

Website: http://dcsqrd.com

Email: contact@dcsqrd.com

 DCsqrd, 2016

For Georgia Tech CS6452 Prototyping Interactive Systems, please do not distribute
8

DCsqrd
T R A I N I N G

used to compare values, but is and is not compare references. (For example, whether

two variables refer to a single object). A special use is comparison to None type and

NotImplemented type, like if a is not Null or if __exec__() is

NotImplemented.

10. Miscellaneous Facts
 Python comments begin with #, and supports single-line comments only. There is no

concept of block comments in Python.

 Variable names can contain letters, numbers and underscores. They cannot begin

with a number.

 Escape sequences are exactly the same as C.

 Avoid starting the variable name with underscore, this is usually reserved for libraries

and language defaults.

 Two string literals put next to each other are automatically concatenated. Example:

 lang = “Py””thon”

 print(lang) # prints “Python”

 Triple-quotes are used to pre-format strings over several lines. Example:

 print("""\

 Usage: thingy [OPTIONS]

 -h Display this usage message

 -H hostname Hostname to connect to

 """)

 The _ variable holds the result of the most recent operation. Example:

 width = 20

 length = 30

 area = width * length

 height = 10

 print(“Volume is “, _ * height) #prints “Volume is 600”

 Strings can be indexed. Negative indices start counting from the right. String index

ranges can also be used, like below.

 word = “Python” # word[0] is ‘P’

 # word[4] is ‘o’ # word[-6] is ‘P’

 # word[-1] is ‘n’ # word[:] is ‘Python’

 # word[0:2] is ‘Py’ # word[3:5] is ‘hon’

 # word[2:] is ‘thon’ # word[:4] is ‘Pytho’

 Strings are immutable. For example, if str=“Python”, you cannot use str[0]=‘J’.

 Raw strings (where you do not want to escape characters) have an r prefix to them,

and Unicode strings have a u prefix to them. Example,

 print(r'C:\some\name') #prints “C:\some\name”

http://dcsqrd.com/
mailto:contact@dcsqrd.com

Website: http://dcsqrd.com

Email: contact@dcsqrd.com

 DCsqrd, 2016

For Georgia Tech CS6452 Prototyping Interactive Systems, please do not distribute
9

DCsqrd
T R A I N I N G

 Similarly, sending byte sequences have a b prefix. (ASCII only, 0-255). This is used

in rare cases, and cannot be treated as or concatenated with strings. Example:

 print(b’\x41\x37’) #prints b’A7’

 There are three useful functions used in association with strings.

rstrip([character]) removes the specified character from either end of the

string, and removes spaces if no argument is specified.

string.split([delimiter]) splits a string into a list separated by the specified

delimiter, and delimiter.join(list) joins all the elements of the list by the

specified delimiter string.

11. Decision making
Decision making statements are fairly straightforward in Python. It differs from C in

the following aspects:

 No parentheses enclose conditions

 Blocks are indented

 else-if is replaced by elif

 Switch-case is not supported in Python

The syntax of the statements are:

11.1 if

if cond:

 run_this

11.2 if-else
if cond:

 run_this

else:

 run_this

11.3 if-elif-else
if cond:

 run_this

elif cond:

 run_this

else:

 run_this

http://dcsqrd.com/
mailto:contact@dcsqrd.com

Website: http://dcsqrd.com

Email: contact@dcsqrd.com

 DCsqrd, 2016

For Georgia Tech CS6452 Prototyping Interactive Systems, please do not distribute
10

DCsqrd
T R A I N I N G

 Note that the expression in the cond has to evaluate to a Boolean value or be a

Boolean value in the first place, by best practices. In theory, only values that evaluate

to False are integer 0 and None.

 Also, Python recommends you use the logical operators and avoid nesting if-else

conditionals.

11.4 try/except blocks

Try / except is a mechanism that causes change of flow on occurrence of an exception

or error in the runtime, and should not be used for other purposes to maintain semantical

validity and maintainability.

Python provides exception handling using try/except blocks. Syntax is:

try:

 try_block

 #throw

except ([exception_type1],[exception_type2],[exception_type3]):

 exception_handler

finally:

 cleanup_action

 The try block contains the “risky code”, where there is a possibility of having an

error. For example, you might be trying to open a file, and there is a possibility that the file

may not exist. In such a case, you put the code to open the file in the try block, specify

FileExistsError in the except statement, and write code to handle the error – say, tell

the user the file was not found. This mechanism ensures that your program “handles” and

recovers from an error that happens, and not crash silently in the background.

 The except block executes only if the specified type of error / exception happens,

otherwise, it is skipped. The finally block contains code that is always executed, despite

whether the error / exception occurred or not. For example, you will need to release the

connection to the database whether or not the insert operation fails.

 If you are writing custom code, you can create your own exceptions for debugging,

by creating exception classes that inherit from the Exception class (defined by Python).

On a side note, raise exception_type([friendly_message]) is used to create

and throw exceptions, system-defined or user-defined.

http://dcsqrd.com/
mailto:contact@dcsqrd.com

Website: http://dcsqrd.com

Email: contact@dcsqrd.com

 DCsqrd, 2016

For Georgia Tech CS6452 Prototyping Interactive Systems, please do not distribute
11

DCsqrd
T R A I N I N G

12. Iteration
Iteration repeats a set of instructions based on a condition. The condition should be a

Boolean expression, or follow Boolean conventions as explained in primitives. Care should

be taken to avoid infinite loops. Iteration or looping falls into three categories in Python

12.1 For loop using range

This is the “traditional” for loop, that runs over a defined numeric range. The expression

after in should be an iterable type in Python

 for x in range(r1,r2):

 run_this

r1 and r2 are integers, like for i in range(0,10):

12.2 For loop over a iterable

This construct iterates over a set of items in a list or dictionary.

 for var in collection:

 run_this

For example,

 for word in words: # words = [“My”,”name”,”is”,”HEISENBERG”]

 capitalize(word)

12.3 While loop (Also, indefinite loop)

While loop is similar to the one in C, with the following syntax:

 while cond:

 run_this

 cond_satisfy #make sure the while loop terminates

Note that Python does NOT support do-while loop.

12.4 Break, Continue

The conditions for iteration support statements are simple.

 break stops the loop and jumps to the next instruction

 continue stops the execution and checks the condition again, without finishing

the rest of the loop body

13. Functions
Functions provide a mechanism for modularity and reuse, by allowing code to “jump”

to a different point and return back to the jump point after performing some computation.

Parameters and return values are optional. def is used to “define” a function. In addition to

http://dcsqrd.com/
mailto:contact@dcsqrd.com

Website: http://dcsqrd.com

Email: contact@dcsqrd.com

 DCsqrd, 2016

For Georgia Tech CS6452 Prototyping Interactive Systems, please do not distribute
12

DCsqrd
T R A I N I N G

those you define, Python defines many built-in functions like print(), min(), length()

and some library functions like math.random() and math.sin(). Python’s syntax for

defining a function is:

 def func_name([params]):

 do_something_here

 do_more_here

 return [something]

You can specify default values for function parameters, (including None), as shown:

 def add(a=0,b=0):

 return a+b # returns 0 if add() is called, 6 if add(6) is called

Also, you can change the order of the parameters, but you need to specify the names

of the arguments along with the values. For example, if a function def login (username,

password, url) is defined, then, it is legal to call the

login(url=’http://some_url/’,username=’user’,password=’r-crYp1:’)

There are two types of functions, depending on the return type. The third type is called

Lambda function, and is akin to Macros in C.

13.1 Void functions

These functions have a return at the end. They do not return any data to the caller,

only the control is returned.

13.2 Fruitful functions

These functions can return data to the caller, in any form. The return value may be

a primitive, list, dictionary or any other Python Object. The return at the end is followed

by the value / variable that needs to be returned.

13.3 Lambdas

Lambdas are anonymous functions that do not follow the same syntax as a normal

function. In many places (in spirit of functional programming), lambdas can be passed

to other functions like any other parameter. Example:

 f = lambda x: x**2 # print(f(8)) prints 64

 foo = [2, 18, 9, 22, 17, 24, 8, 12, 27]

 print (filter(lambda x: x%3==0, foo)) # prints [18, 9, 24, 12, 27]

http://dcsqrd.com/
mailto:contact@dcsqrd.com

Website: http://dcsqrd.com

Email: contact@dcsqrd.com

 DCsqrd, 2016

For Georgia Tech CS6452 Prototyping Interactive Systems, please do not distribute
13

DCsqrd
T R A I N I N G

14. Object Orientation in Python
Like most modern languages, Python supports Object Oriented philosophy. Even

though it does not force Java’s “Everything is an object” model, internally, everything in

Python is an object. This allows maximum flexibility for the programmer.

All the classic OOP constructs like encapsulation, polymorphism, inheritance and

abstraction are supported. Let us consider the program below:

class Employee:
 “““Common base class for all employees””” # class documentation
 empCount = 0 # class variable

 def __init__(self, name, salary): # constructor
 self.name = name
 self.salary = salary
 Employee.empCount += 1

 def displayCount(self): #class methods
 print("Total Employees:%d" %Employee.empCount) # using C-style print

 def displayEmployee(self):
 print("Name:",self.name,",Salary:",self.salary) # Python style print

emp1 = Employee("Zara", 2000) # object initializations
emp2 = Employee(“Joe”, 1500)
emp1.displayCount() # prints 2
emp2.displayEmployee() #prints Name:Joe,Salary:1500

 The keyword class tells Python that we are defining a class. The class name follows,

followed by the class block.

 Triple quoted strings inside the class represent ‘Class Documentation’ that can be

accessed by classname.__doc__ variable. This is a good practice to write

documentation for each class you define in Python.

 Class members and member functions are places inside the class block. The normal

variable naming conventions and rules apply.

 self is the reference to the object, like the this keyword in C and Java. Python requires

you to explicitly mention this variable in each class function, unless it is a static function

(not associated with the class instance). Note that self is not a keyword, you can use

this or any other valid variable name in place of it.

 The __init__() function is the constructor, and is called each time you instantiate an

object of that class. Similarly, there exists the __del__() function for destructor, though

it is not used frequently (Python manages garbage collection internally).

http://dcsqrd.com/
mailto:contact@dcsqrd.com

Website: http://dcsqrd.com

Email: contact@dcsqrd.com

 DCsqrd, 2016

For Georgia Tech CS6452 Prototyping Interactive Systems, please do not distribute
14

DCsqrd
T R A I N I N G

 Variables that begin with double underscores (__) are protected class members. Others

are public by default.

 Inheritance works by inheriting from a parent class or a set of parent classes. The syntax

is:

class SubClassName (ParentClass1[, ParentClass2, ...]):

 “””Optional class documentation string”””

 # class_suite

 Method overriding is achieved by having a function with the same name in the child

class. The nearest function (child precedence) is called.

 Operator overriding is achieved by overriding the __add__(), __sub__(),

__radd__(), __lt__(), __gt__(), __eq__(), __iadd__(), etc., These are built-in

functions that are executed in lieu of operators for classes. The names surrounded by __

are called magic methods or dunder methods, and __init__() is pronounced “dunder

init dunder”

15. Imports
We grew out of single-file source codes a long ago. As programs get more complex,

in view of maintainability and logical organization, we will need to “break” the code over

several files, in order to separate functionalities. In fact, software architecture defines

patterns like MVVM and MVC (Model-View-Controller) that suggest separation of concerns.

Also, libraries that you import into Python should have a mechanism to be included into the

program, like the C #include<> or Java include.

Python uses the import statement to reference and use code from other files. Printing

an imported module will print its location, like so:

 import math

 print math # prints <module 'math' from '/usr/lib/python2.5/lib-

 dynload/math.so'>

Finally, you can import either modules or libraries. To import a library, a plain

import library_name is used, whereas, to import a specific module, from

library_name import module_name or import library_name.module_name is

used. For the second approach, remember that the library name prefix is mandatory

whenever the module is called, because it is not imported to the program namespace.

Python is not pre-processed. If you want to, say, read constants from a file

constants.py, you can just place it in the same directory and just say import constants to

be able to access variables in that file.

http://dcsqrd.com/
mailto:contact@dcsqrd.com
http://www.python-course.eu/python3_magic_methods.php

Website: http://dcsqrd.com

Email: contact@dcsqrd.com

 DCsqrd, 2016

For Georgia Tech CS6452 Prototyping Interactive Systems, please do not distribute
15

DCsqrd
T R A I N I N G

To create your own libraries, you need to create a python package (basically, a

directory) with a file called __init__.py. This file decides which modules are exposed

as APIs, while keeping other modules internal. This is done by overriding the __all__

list, including the names of the exposed modules.

16. File Operations and Persistence
Persistence is an important property, where you preserve changes outside the

program. Without persistence, every time you stop program execution, it starts from its initial

state, which is not desirable for most applications.

With this in mind, the most used persistence techniques are writing to flat files,

followed by databases. We will get to databases later, and look at writing to files and

reading from files. The program needs a “handle” to deal with files. Handle is basically a

variable that points to the file in order to perform operations on it.

 handle = open(file_name,[mode],[buffering])

 The file name follows the standard relative / absolute convention, and mode is read

(by default), or write(w). Other modes like binary(b), append(a), initial(+) can be used in

groups. The buffering argument is 0 or 1 to disable or enable buffering respectively.

To read from a file, handle.read([byte_count]) can be used. The optional

byte_count argument specifies how many bytes needs to be read from the file, and defaults

to all contents of the file.

To write to a file, handle.write(Content_string) can be used. As expected, it

writes the specified string to the file. Nothing more to it. Sometimes, you will notice that your

contents are not reflected in the actual file. Why? Because it is still in the buffer. To write to

the file, you need to close() it if you are done, or flush() it if you need to perform more

operations.

While we are discussing file operations, the os library supports file renames,

deletions, and working with directories.

os.rename(cur_file_name, new_file_name) # rename a file

os.mkdir(new_dir_name) # create new directory

os.chdir(dir_name) # change to specified directory

os.getcwd() # returns current working directory

os.rmdir('dirname') # delete a directory

http://dcsqrd.com/
mailto:contact@dcsqrd.com

Website: http://dcsqrd.com

Email: contact@dcsqrd.com

 DCsqrd, 2016

For Georgia Tech CS6452 Prototyping Interactive Systems, please do not distribute
16

DCsqrd
T R A I N I N G

17. PIP – PIP Installs Packages
PIP is a command-line package management system used to install and manage

software packages in Python. Installing and removing libraries you require is managed by

PIP. PIP is installed with Python by default. The syntax for installing/removing a package is:

pip install some-package-name

pip uninstall some-package-name

Installed PIP libraries can by recreated with corresponding version numbers for use

with another computer / cloud system or virtual environment (venv) by using

pip install –r requirements.txt

Internally, PIP downloads something called a Wheel package by auto-detecting your

Python version number and dependencies for the current library and installs them.

18. PyMySQL library
Another major form of persistence is the use of databases. Databases are better for

more complex structuring of data, and can handle constraints and indexing across multiple

processes and threads. Also, retrieving data is much easier by the use of querying

languages.

ORM (Object-Relation Models) allow direct translation of an “object” in a

programming language to a database entry. A popular ORM framework for Python is

SQLAlchemy.

We will be looking at MySQL in particular, for this demonstration. Install the access

library by opening the command line and using pip install pymysql. Once that is done,

the library can be imported into any Python program by using the import pymysql

statement at the beginning of your program. Note that you should have set up MySQL

previously, and know the database name, username and password (this typically constitutes

the “connection string”) to connect to the database.

To connect to the database, we make a connection using a regular Python variable:

con = pymysql.connect('localhost', 'root', 'pavap', 'test')

Next, you have to use a ‘cursor’, to point to this connection and perform query

operations on the database. cur = con.cursor()

Using this cursor, it is easy to execute SQL queries. cur.execute(SQL_Query)

http://dcsqrd.com/
mailto:contact@dcsqrd.com
http://www.sqlalchemy.org/

Website: http://dcsqrd.com

Email: contact@dcsqrd.com

 DCsqrd, 2016

For Georgia Tech CS6452 Prototyping Interactive Systems, please do not distribute
17

DCsqrd
T R A I N I N G

18.1 Reading queries

As soon as you execute a select query (that retrieves results from a database, if any)

using cur.execute(), the results returned are stored in the cursor, and can be

accessed via the cur.fetchone() or cur.fetchall() functions to return one or all

results (which can be further accessed by a for..in loop).

18.2 Create / Update / Delete queries

 A simple cur.execute() with insert / update / delete query will achieve the task

of modifying the database, provided the credentialed user has such a permission.

18.3 Best practices – an example
import pymysql

Connect to the database using connection string

connection = pymysql.connect(host='server_name_or_url',

 user='username',

 password='passwd',

 db='database_name')

Surround with try / except block, database operations are risky!

try:

 with connection.cursor() as cursor:

 sql="INSERT INTO `users`(`email`, `password`) VALUES (%s, %s)"

 cursor.execute(sql, ('webmaster@python.org', 'very-secret'))

connection is not autocommit by default, perform commit to save

connection.commit()

 with connection.cursor() as cursor:

 # Read a single record

 sql = "SELECT `id`, `password` FROM `users` WHERE `email`=%s"

 cursor.execute(sql, ('webmaster@python.org',))

 result = cursor.fetchone()

 print(result)

except Error: # handle error here

finally:

 connection.close()

Result is: {'password': 'very-secret', 'id': 1}

http://dcsqrd.com/
mailto:contact@dcsqrd.com

Website: http://dcsqrd.com

Email: contact@dcsqrd.com

 DCsqrd, 2016

For Georgia Tech CS6452 Prototyping Interactive Systems, please do not distribute
18

DCsqrd
T R A I N I N G

19. BeautifulSoup library
Sometimes, we have to face the fact that we do not have access to the database.

For instance, you cannot expect Amazon, eBay and Flipkart to give you access to their

catalog and price database so you can write a script to compare prices before you buy,

right? Similarly, your university might not give you a database access to find out your

classmates’ marks and compare them. In such cases, where information is available on a

webpage, you can “scrape” the webpage by writing a “spider” and “crawling” through

them.

First off, in order to scrape a webpage, it is advisable to have a basic knowledge

of HTML tag structure and supported attributes. You can look up w3schools to know more

about HTML tags.

BeautifulSoup allows you to “read” a webpage by its tags, IDs, etc., and filter out

the information for further processing. Even though you can write a web parser by reading

page contents, BeautifulSoup handles malformed tags and generic attributes well.

from bs4 import BeautifulSoup will import the BeautifulSoup library. It makes

use of a “soup object” that lets you read components from the page. soup =

BeautifulSoup(html_doc, 'html.parser'). html_doc is the file handle / URL handle

to the webpage, and the second argument is optional, indicating which parser to use. lxml,

lxml-xml, html5lib can be used.

Tag contents can be read easily by using the dot operator with soup object. For

example, soup.title prints the title of the page. You can also navigate as

soup.article.em, where it searches for occurrences of tag em inside article elements

only. Note that this finds only the first occurrence of the tag. For example, to find the first

link in a page, use soup.a. Instead, if you like to find all the links on a page, use

soup.find_all(‘a’), it returns a list with all the links. To find a tag with a particular ID

(say, price), you can use soup.find(id=”price”)

If you want to print a particular attribute of the tag, you can use the .get method.

For example, printing all the links in a page, you can use:

for link in soup.find_all('a'):

 print(link.get('href'))

To print the contents, soup.get_text() is useful. If you want to pretty-print,

soup.prettify() will properly indent the lines. The following table lists other often-used

BeautifulSoup functions, but for a full list, refer the documentation.

http://dcsqrd.com/
mailto:contact@dcsqrd.com
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/bs4/doc/

Website: http://dcsqrd.com

Email: contact@dcsqrd.com

 DCsqrd, 2016

For Georgia Tech CS6452 Prototyping Interactive Systems, please do not distribute
19

DCsqrd
T R A I N I N G

tag…. Returns .find_all(…) Returns

.string the bit of string within the tag (“p”,”title”) all p and title tags

.attrs
dictionary of attributes and

values

("a",

attrs={"class":

"danger"})

all a tags which have

the class “danger”

.name name of the tag

 (id=”description”)

this is a filter,

searches attributes

where the id attribute

is set to

“description”

.contents list with all content tags, direct.

.children
same as .contents, but

iterable
(p, limit=2)

p tags, maximum of

(first) 2 in the list

.strings

all the contents (no tags) of

specified tag. Use

.stripped_strings to

remove extra whitespaces

(p, recursive=True)

Recursively lists p tags

(p tags within p tags

are also searched)

.descendants list of children, recursively
("p", class_="body

str")

p tags, where CSS

class is “body str”

only, and not “str

body”

.parent

Returns immediate parent of

the tag. .parents returns a list

of parents recursively.
If you’re having trouble understanding what

Beautiful Soup does to a document, pass the

document into the diagnose() function.

Beautiful Soup will print out a report showing

you how different parsers handle the

document, and tell you if you’re missing a

parser that Beautiful Soup could be using:

from bs4.diagnose import diagnose

data = open("bad.html").read()

diagnose(data)

.next-

sibling,

.previous-

sibling

Navigate between page

elements on the same level of

the parse tree. ….siblings

returns iterables.

.has_attr()
True if tag has the mentioned

attribute, False otherwise

.select(CSS_

selector)

list of tags that contain the

specified selector

http://dcsqrd.com/
mailto:contact@dcsqrd.com

Website: http://dcsqrd.com

Email: contact@dcsqrd.com

 DCsqrd, 2016

For Georgia Tech CS6452 Prototyping Interactive Systems, please do not distribute
20

DCsqrd
T R A I N I N G

20. Being Pythonic
 Over time, as the Python language evolved and the community grew, a lot of ideas

arose about how to use Python the right way. The Python language actively encourages a

large number of idioms to accomplish a number of tasks ("the one way to do it"). In turn,

new idioms that evolved in the Python community has have in turn influenced the evolution

of the language to support them better. Consider the following example:

All three snippets

perform the same function, but

the “recommended” way to do

it is the one in the end.

Similarly, the example shows

how to exploit tuples to

achieve the task, instead of

using a verbose function.

Our point is, code that is not “Pythonic” tends to look odd or cumbersome to an

experienced Python programmer. It may also be harder to understand, as instead of using

a common, recognizable, brief idiom, another, longer, sequence of code is used to

accomplish the desired effect. Since the language tends to support the right idioms, non-

idiomatic code frequently also executes more slowly.

Remember that Python was built around the core of understandability and simplicity

– and in order to achieve that, there have been more efficient data structures and functions

added over the years that let you concentrate on the task with the least amount of coding

effort, at the same time, not sacrificing understandability.

These idioms extend beyond programming constructs, and you should keep them in

mind when you are, say, writing a library. It is your duty to make the code as easy and

natural as possible for a Python programmer to pick up and perform a task. Also, as you

become more experienced in Python programming, you will realize the importance of the

possibilities that you can exploit by utilizing these idioms, like passing methods to functions.

Dedicate some time to tell your story the pythonic way!

i=0

while i<list.length:

 function(mylist[i])

 i+=1

for i in

range(list_length):

 function(mylist[i])

for element in list:

 function(element)

def foo(a, b):
 a[0] = 3
 b[0] = 5.5
alpha = [0]
beta = [0]
foo(alpha, beta)
alpha = alpha[0]
beta = beta[0]

def foo():
 return 3,5.5

alpha,beta = foo()

Pythonic!

http://dcsqrd.com/
mailto:contact@dcsqrd.com
http://programmers.stackexchange.com/questions/119913/how-can-i-learn-to-effectively-write-pythonic-code

